11,051 research outputs found

    B→SB\to S Transition Form Factors in the PQCD approach

    Full text link
    Under two different scenarios for the light scalar mesons, we investigate the transition form factors of B(Bs)B(B_s) mesons decay into a scalar meson in the perturbative QCD approach. In the large recoiling region, the form factors are dominated by the short-distance dynamics and can be calculated using perturbation theory. We adopt the dipole parametrization to recast the q2q^2 dependence of the form factors. Since the decay constants defined by the scalar current are large, our predictions on the B→SB\to S form factors are much larger than the B→PB\to P transitions, especially in the second scenario. Contributions from various light-cone distribution amplitudes (LCDAs) are elaborated and we find that the twist-3 LCDAs provide more than a half contributions to the form factors. The two terms of the twist-2 LCDAs give destructive contributions in the first scenario while they give constructive contributions in the second scenario. With the form factors, we also predict the decay width and branching ratios of the semileptonic B→SlνˉB\to Sl\bar\nu and B→Sl+l−B\to Sl^+l^- decays. The branching ratios of B→SlνˉB\to Sl\bar\nu channels are found to have the order of 10−410^{-4} while those of B→Sl+l−B\to Sl^+l^- have the order of 10−710^{-7}. These predictions can be tested by the future experiments.Comment: 20 pages, 31 figure

    CPTCPT Violating Electrodynamics and Chern-Simons Modified Gravity

    Get PDF
    The electrodynamics with a Chern-Simons term pμAνF~μνp_{\mu}A_{\nu}\widetilde{F}^{\mu\nu} violates Lorentz and CPTCPT symmetries with a non-vanishing pμp_{\mu}. For a fixed vector pμp_{\mu}, in this paper we point out that the energy-momentum tensor of this theory coupled to the gravity minimally is symmetric but not divergence free, which consequently makes the gravitational field equation inconsistent. To preserve the consistency, we introduce a Chern-Simons term in the gravity sector with the coefficient determined by the Lorentz and CPTCPT violating term in the electromagnetic field. Further we study the phenomenologies of the model on the cosmic microwave background radiation and the relic gravitational waves.Comment: 11 pages, 1 figure, the version to appear in Physics Letters

    Dark Energy Perturbations Revisited

    Full text link
    In this paper we study the evolution of cosmological perturbations in the presence of dynamical dark energy, and revisit the issue of dark energy perturbations. For a generally parameterized equation of state (EoS) such as w_D(z) = w_0+w_1\frac{z}{1+z}, (for a single fluid or a single scalar field ) the dark energy perturbation diverges when its EoS crosses the cosmological constant boundary w_D=-1. In this paper we present a method of treating the dark energy perturbations during the crossing of the wD=−1w_D=-1 surface by imposing matching conditions which require the induced 3-metric on the hypersurface of w_D=-1 and its extrinsic curvature to be continuous. These matching conditions have been used widely in the literature to study perturbations in various models of early universe physics, such as Inflation, the Pre-Big-Bang and Ekpyrotic scenarios, and bouncing cosmologies. In all of these cases the EoS undergoes a sudden change. Through a detailed analysis of the matching conditions, we show that \delta_D and \theta_D are continuous on the matching hypersurface. This justifies the method used[1-4] in the numerical calculation and data fitting for the determination of cosmological parameters. We discuss the conditions under which our analysis is applicable.Comment: 10 pages and 1 figure
    • …
    corecore